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Overview

= Lagrangian hydrodynamics of two materials in 1-D
* Two material, one-velocity model leads to a closure problem.

" Three different staggered-mesh discretizations
* The approaches used in computations are presented.

= Several different closure models
* All use pressure relaxation in the mixed cell as a physically-
motivated assumption.

= Comparison of computational results
* Pressure equilibration behavior for two test problems

= Summary and conclusions

“‘Das Ziel der Wissenschaft ist einerseits, neue Tatsachen zu erobern,
andrerseits, bekannte unter hoheren Gesichtspunkten zusammenzufassen.”
Sophus Lie, Gesammelte Abhandlungen, B.G.Teubner, Leipzig, 1934.
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Two-material Lagrangian hydrodynamics in
1-D presents several open issues.

= Conservation laws govern the flow of inviscid, non-heat-
conducting, compressible fluids in the Lagrangian frame:

Dt Jdu
Mass: o =—"-"2=20 T =1/p
Dt ox
0 —
Momentum: ol Du  oP _ 0 p? = pY(x)
Dt ox = p(xt=0)
Energy: pV De + J (Pu) = 0 e=¢+ (12)u?
Dt ox
Equation of State: P = P(ex) Specific Internal
(EOS) Energy (SIE)

= With 1-D equations, we can:
* Test — rigorously — fundamental algorithms
* Quantitatively evaluate algorithm performance

) = With 1-D models, we cannot necessarily extend to 2-D.
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We make some simplifying assumptions.

= There are two materials.

* Two materials cells (almost) certainly occur during the remap
of a multi-material ALE calculation.

* Modeling of two materials requires much more care than one
material simulations.

* Modeling of two materials does not imply an unambiguous
method for model three (or more) materials.

" These two materials are described by one velocity.
* This implies — either implicitly or explicitly — that a sub-grid
model describes the mixing of the materials within each cell.
* This differs from more sophisticated, multiple velocity-field
models that are used, e.g., for two-phase flow.
= We focus on closure models for pressure equilibration.

* We do not discuss here the important issue of artificial viscosity
models for multiple-material cells.”

e * See: Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for
SAND2011-6003C Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010.




Algorithm I uses the following predictor-
corrector approach®.

4 iti - xtLx_xn 4 Afey ifici
. Edge positions: i+1/2 = N2 i+1/2 \,/é)gtégcg%//
) Cell volumes: yn+ls _ yn+lsx o ynstls
_2< i,cell i+1/2 i—1/2
IS ) IS n+ls _ _ n /
o Edge-velocities: u T ur e At(p! \+4;,,-Pi -4} Mz+1/2node |
Q. el L Adiabatic
__ Cell pressure: prt=pt - x At p7 (e )? Veu! update
 Node mass: Yo am )
iti /2 I—ll-(ide 2 heel At H_l-ffu +1.* +1,* +1,*
- - n — n n n n n
Edge-velocities: iy = Wy (le +q Pt g
n
S +p1+1 ql+1_p 4, )/Mz+1/2node
—~— . _ . n+1/2 — 1 n+l
§ Time-center: qu/zl (qu/z ul+11//22
L - . x”l"‘ _xn + Az- un'l'
8 < Edge positions: i+1/2  Ti+l/2 i+1/2
. n+l _ yn+l _ yn+l
Cell volumes: |4 el = X~ M _11/2 1
ity - n+l _ n+ n+l — n+
Cell density.: ot =M, o/ Vien = T =1/p] | ’
Cell SIE: el =g (At p]) (P + g0 -V ) (A VD)
Cell pressure: p?’l” P(8n+1 ™ Funeos can

l l
* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for
SAND2011-6003C Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010.




This algorithm changes for multiple materials.

= Denote the volume fraction of material o as: f, =V, /V

= In the predictor, the change is to the pressure update.

* The pressure of material o at " is evaluated: p” =P(8£‘a, Tfa)

9

° ' . n+l,* _ pn  _ n n 2. n
Pressure predictor update: Al A X At ,ol.’a(cs, i a) Vul.

* With the following relations, Bondarenko & Yanilkin®* showed
that total energy is conserved in this approach:

+1 % _ n+l +1 % _ +1
Pl-” =3 v, P, JF qrrtir =3 v q;fa ¥
(04 o

where Y, is determined by the closure model.

= In the corrector, additional modifications are required.

* The node mass becomes:
=03 M+ M where M =f p V

i+1/2,node i+Lo o “ia o i

* Bondarenko, Yu.A., Yanilkin, Yu.V., “Computation of thermodynamical parameters of the mixed cells in gas dynamics,”
. VANT (Mathematical Modeling of Physical Processes) 2000;4:12—-25 (in Russian).
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Additional changes in the corrector are needed.

= Updated values for material o are as follows:

Volume: V_”+1 Vi & At Vn+1 V- un+1
I,o I,o I,o .

e n+l _ n+l n+1 n+

Density: P M ,-,C?H,a / Vi - U 1/ Pia
. +1 _ n+ n+
Volume Fraction: flna - Vi,a /Vz
. n+l _ en  _ n n+l* n+l*

SIE: 8i,a 81',05 (At/pi,a)(pi Qo +qi o )

x (1/2) (V-ulﬂa+V-ul."Ojla*)
* In the above expressions, the following quantities are still undefined:
artificial viscosity ¢;,, , velocity divergence V- u! , parameter ¥,
= We impose the following constraints:
(1) Volume: V = gVa = gfa =1 and AV = Eéva : %fav-ua = V-u

(2) SIE: £ = EYaea with Y, =f, 0,0 P = %fapa

Assume velocity divergence is modeled as: V-u_, =14, V-u
L suchthat vy, =/ 4,

SAND2011-6003C



Algorithm II uses the following approach®.

Node mass: Mi+1/2,node =(1/ 2)(Mi,cell+Mi+1,cell)
Time steps: Att = pntlom - A = pnogn-l
_ Tt n+l/2 _ ;n-1/2 _ + — n n _ph_N
Edge-velocities: ul,+1/2 ”i+1/2 (1/2)(At* + At )(pl.+1+ql.+1 pl-q )/Mi+1/2,node
iti . n+l _ n +.,n+1/2
Edge positions: Xt = Xyt At ut s
Cell volumes: yn+l _ yn+l o yn+l

i,cell i+1/2 i—1/2

T +1 _ n+l +1 _ n+l
Cell density. prl= M, /Vi,cell = ol =1/p
Cell SIE: entl = et - (112) (pH+q —ptt —qit) (i+1-T1)
Cell pressure:  pr+l = P 1y Funeoscan

l l l

These are implicit, nonlinear equations in gl.”” and pll”l that
are solved with an iterative solution procedure.

<= " For multiple materials, Alg. IT changes similarly to Alg. I

* Yanilkin, Yu.V., Study and Implementation of Multi-Material Pressure Relaxation Methods for

SAND2011-6003C Lagrangian Hydrodynamics, Los Alamos National Laboratory report LA-UR-10-06664, 2010.



Algorithm 1II is similar to the first algorithm®.

i Edge positions:

Cell volumes:

Predictor
N

X Cell pressure:

Cell specificvol.: T

xn+1/2
i+1/

Vl’l+1

i,cell
n+1/ 2

l

=x" + (At/2) u’

i+1/ i+1/2 _ _
n+1 2 K1 1/2 Adiabatic update
l+1/2 i—1/2
n+l/2
Vl cell /Mz cell

Edge-velocities: ntl _gn _ At ( n+l/2 +qn+1/2 B p(z+1/2 B q(z+1/2 )
] i+1/2 i+1/2 Mi+1/2 node l l
Edge positions: oy AU Th /2
gep i+1/2  Ti+1/2 RIS
- n+l _ yn+l _ yn+l P - -
S < Cell volumes: V. el = Y T X Artificial viscosity
"G e . n+l1 n+l
o | Cell specific vol.: T =V M.
= i,cell i,cell
o
A Cell SIE: 8n+1 _ 8 _ pn+1 qn+1 Vn+1 M
i I i i,cell
. n+l n+l _n+l
L Cell pressure: piT = PETTT)
* Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-
SAN2011 60(;g(a:terial Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038. 9



With Alg. I, several closure models for pressure
equilibration can be examined.

@D Equal compressibility*: V-u, = V-u so i,=1, y, =71,
* Assume this is valid at the predictor step: V- u2*1/2 = v. y7+1/2
* Easy to implement; computationally efficient: p=2f,p,
* Physically incorrect—with questionable results—in many situations.
— E.g., cell with gas (highly compressible) and metal (low compressibility).

@ Equal pressuret: p, =p, and ¢, =q,
* This is the result of instantaneous (i.e., over Af) pressure equilibration.

* Leads to coupled equations: one must solve for AE,, AV, p™*1/2 in:
M, Ea+AEa)

AE = (pn+1/2 4 gn AV . AV = AV, pn+l/2- ,
o= (P q") u w > D P(V£+AVa o
where  u=(V-u + V-u™HVnat/2AV)

* These imply expressions for updated SIE and volume fraction:

etl2 = ¢ +(AE, /M), fIi+U2 = (V +AV )/(V+AV)

» Bakhrakh, S., Spiridonov, V., Shanin, A., “A method for computing gas-dynamic flows of inhomogeneous medium in Lagrangian
T Eulerian coordinates,” DAN SSR 1984;276:829—-833 (in Russian; translated in Sov. Phys. Doklady 1984;29:443-445).
o T Harlow, F., "The particle-in-cell computing method for fluid dynamics," in Alder, B., Fernbach, S., Rotenberg, M., eds., Methods in
Computational Physics, Vol. 3; New York: Academic Press; 1964, 319-343; Zharova, G.V., Yanilkin, Yu.V. "The EGAK code mixed
é)ressure equilibration algorithm," VANT (Mathematical Modeling of Physical Processes) 1993;3:77-81 (in Russian).

(04
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Equal-increment models can also be formulated.

@ Equal pressure increments* (AP ):
* Assume that the general acoustic approximation is valid:
P/t = (OP/3p)(dp/dt) = p c? V- u
* Assume that this quantity has the same value for all materials:

2 ey = 2V.
pcs Vou, = p,e5Vou,

* This leads to the following closed-form expressions: I -1
V-ull = A, V-u®  where A, =1 P

B pn(cn)Z an(cn)Z
@ Equal velocity incrementst (Av): @ pop
* One velocity per cell, so equal velocity increments is plausible.
* Acoustic approximation implies: V'bta ~ —(5pa)/(paAt) ~ —(6ua)/(caAt)
* This leads to the following closed-form expressions:

S(fy /)

» Bondarenko, Yu.A., Yanilkin, Yu.V., “Computation of thermodynamical parameters of the mixed cells in gas
dynamics,” VANT (Mathematical Modeling of Physical Processes) 2000;4:12—-25 (in Russian).
T Goncharov, E.A., Yanilkin, Yu.V., “New method for computations of thermodynamical states of the materials in

- mixed cells,” VANT (Mathematical Modeling of Physical Processes) 2004;3:16-30 (in Russian).
SAND2011-6003C
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With Alg. 11, a linearized Riemann problem* (LRP) used.

® Consider a Riemann problem in the mixed cell:

* Riemann invariants imply the well-known ~ —e °
linearized contact velocity expression: u, O > © u,

Uu.
n. n+l/2 n._ n+l/2 n n intfc
way - PG + (PG ) uy" " +(p—p,)

e (e, )+ (pe, ),

* From Algorithm II, the V2 nli2
following updat L e
olowing updaate n+l n M

for the density follows: P P
* Combining these equations gives updates for each material implies:

1 - ln = At (gcs)z n(uwl/z—uﬁl/z) N P%-Pz i
Pf+ ,O1 M1 (Pcs)l +(pCS)2 ! i— (pcs)1 +(pcs)2_

1 1 = At (PCS)? 2 _ynli2y _ Pln-l?;
ooty Myt e(pe)y T (o) +(pe )

* Delov, V., Sadchikov, V.V., “Comparison of several models for computation of thermodynamical parameters for

' heterogeneous Lagrangian cells,” VANT (Mathematical Modeling of Physical Processes) 2005;1:57—70 (in Russian).
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The LRP* method also involves additional equations.

°* From V-u =AV/(VAt), the individual + +
velocity divergences are obtained: U, O - 0 u,

— N\XT.., 1 n_ n n ny]. nl-1
=& fOV-u" + 0" [(p - pI (" W) H(po)]
where
pg = 5. (o = Loy +(eepl . A =1-[3(po) (pe)s ] .
with A" a Characterlst|c mesh size and @” |mproves stability:
" =100 +(00) ]} 0"l e mm{f1 7|
° From the velocity divergence equation, the volume change is:
n+l _yn _ n+l yn n n_ .n nl-1
VIRV = A (VIH-VT) + (@ AcV" 1) (P! - P (o) ]

* After some algebra, this implies that the energy update for
material o is modified by an additional term:

Ae™l = [(@")/(p"h) £, [P (p]'- P+ P (P - P [Goe )t I

* Delov, V., Sadchikov, V.V., Comparlson of several models for computation of thermodynamical parameters for

' heterogeneous Lagranglan cells,” VANT (Mathematical Modeling of Physical Processes) 2005;1:57—70 (in Russian).
SAND2011-6003C




Kamm & Shashkov* (KS) break the pressure
equilibration assumption of Després? using

local Riemann problem solutions.

m Pressure relaxation in the mixed cell reduces to the
solution of a minimization problem in 7+l gn+l i+l en+l

wia|gqold uuewsaiy |[@9-paxi|n

_ 1 1 > 2 72
n+l nf—llll n+l n+l f() = ”?{H_l_ 1RP|| + ”Pzn-l-l_ §P”
{ E T €
1 1 2( 2 | | |
_ — n+ n+ n+
cubiect 0= f1 =cqT T+, T -1
J < 0 = f = c gh+l 4 C ghtl _ cn+l
to: 2 7 17 2 2
_ — oh+l _ n+l __n
\O_f3_811 81+P(‘L’1‘L’1)
_ [en+l _ n+ n
a, d, [€5 82+ P, (r -7, )]I d, I&I
%_ﬁ 2
Imix Imlx+1 Imlx lmlx21

#&% m Complicated — and untested for realistic problems in multi-D.
e Kamm J.R., Shashkov M.J., Comm. Comput. Phys., 2010; 7:927-976.
SAND2011-6003C T Després, B., Lagoutiere, F., Prog. Comput. Fluid Dyn. 2007; 7:295-310.




-+

Kamm, Shashkov & Rider* (KSR) also - - e
propose a linearized Riemann model. u, @ — @ 1y,

U

ntic

m Inspired by VNIIEF work, KSR used the linearized Riemann problem

to update the materials’ volumes, volume fractions, and SIEs.
" There is a problem: this SIE update is not consistent with the total work
done on the mixed cell, i.e., E M, dei*'" = p’”l/2 dv'!
i +1/2 i . +1/2

m Let dS be the change in SIE that guarantees conS|stency

Consistent [EZ +1]= [8,?”’ ]+ [dek] Known + Unknown

® Assume that the pressure change due to dEk : (1) is the same for both
materials, and (2) depends only on the energy (not on the density).

® Using the expression for the total SIE discrepancy and the
thermodynamic derivatives (0P, /§€k)pk, one can solve for the
corrections to the SIEs and then update the pressures:

8Z+1 _ €£+1,* + dgk and n+1 _ P(€n+l n+1)

« Kamm J.R., Shashkov M.J., Rider, W.J., “A new pressure relaxation closure model for one-dimensional two-

] material Lagrangian hydrodynamics, Eur. Phys. J. Web Conf. 2011, doi:10.1051/epjconf/201010000038.
SAND2011-6003C



Tipton’s method is a widely used, robust multi-
material, pressure relaxation for multi-D.

m Assumption #1: Predictor pressure based on adiabatic update:

n+l/2 — pn _ |[~cM2 )/ n n+1/2| xyn)
pk pk LCSk} /‘L’k 5Vk Vk

J
_ . . Unknown _
= Assumption #2: There is a relaxation term added to each material’s
pressure, so that these sums are all equal:

Unknown

pr+l2 4R =|pr+1l2

(Y (NS +1/2 \
where R = = cs, /rk) LL /(StJ L‘SVI? V]fJ

= Assumption #3: Volume changes add up correctly:

k
n+1/2
Vk

= One can solve for p*+1/2 and o in closed form.

" The second step of a two-step time-integrator uses this
information to obtain the final updated values.

SAND2011-6003C



The initialization of the pure-material and
mixed-cell test problems are as follows.

m The test problems were run similarly:
°* N, zoneson x

minsx<xmax with Axi=h,i¢i

mix

* One mixed cell for i =i, with Ax; = 2h

Mixed
imix | it Ne TNyt
P 1 >ie @) >
R T ———S— L NSRS S
A i it s +2 AN 41N 42
* The fictitious mixed-cell * We compare these results
interface is at the center of with pure-material
mixed cell of width 2h, with calculations that have

no explicit mass-matching. the actual interface.

SAND2011-6003C
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The template for the test problem
time-history results is as follows.

o I 1A

| IPure | I AP I Av ®" |n the following
—| | slides, rows
EI “Pure”: | Equal Equal correspond to
-*cE)l No mixed | Pressure Velocity different under-
<_?:3| cell | | Increments Increments lying hydro

| || algorithms

: 11 Pure : : 11 LRP = The first column is the “pure”
= o o material case: no mixed cell.
£ | Pure> 'l |1 Linearized
S|, Nomixed 1| |, Riemann = Other columns correspond to
S cell | |' Problem different pressure eql_JiIibration
<| | methods, with one mixed cell.

: IIT Pure : : KS IIT KSR Tat&":
=
£ “Pure’: : : “Optimized” Linearized :
% | No mixed | | Riemann Riemann Tipton |
8’| cell | Problem Problem |
< |

______ o= T

y003C *Tufte, E., The Visual Display of Quantitative Information, Graphics Press, Cheshire, CT, 2007.



Test Problem #1: Modified Sod Shock Tube

= Modified Sod initial conditions:
(1.0, 2.0,0.0,2.0), 0<x<0.5 Material 1
(p.pssy) = {(0.125,0.1, 0.0, 1.4), 0.5<x<1.0, Material 2
" Final-time snapshots show the standard shock-tube evolution.

=0.2

tfinal

0.12

| = |n the following slides, we
XX . g . present time-histories in the
5 '3 ﬁ” "3 single mixed cell.
0O o4 E N
“ " Results for all of the methods
8 %o ez o e ws o o2 o4 08 os i mentioned are presented.
o . Position Position 1
S * All methods have been
J\/ﬁﬂf v 5] demonstrated to be about
w 1%“ 8o 03 first-order accurate on this
'~ S L. problem.
0 0.2 POO4SIt:)gn 0.8 1 0 0.2 P(())‘lsltlo(;n 0.8 1

“Closed-form” — Computed = Error

SAND2011-6003C



Modified Sod Pressure History

I Pure I AP I Av

2 2 z = All methods:
2 * Equilibrate
0, 1 1
3 Material 1 1 * Obtain the
s | | correct final

.,/ Material 2 0 o | pressure

II P1 u rgs 02 0 0'(55[:[ OI:R I:;Ms 02 0 0.05 0.1 0.15 0.2 . .

2 2 = All methods exhibit pressure

Qs oscillations, also.

-]

% 1 1 = Among mixed cell methods,
& s KSR and Tipton look

0 0 heuristically the “nicest.”

~ III Pure . KS . III KSR _ Tipton
e 15 15 1.5 1.5
)

w 1 1 1 1
)]
o
D_o_s 0.5 ° 0.5 3 0.5
° 0.05 0.1 0.15 0.2 ° 0 0.05 0.1 0.15 0.2 ° 0 0.05 0.1 0.15 0.2 0 O/jS 0.1 0.15 0.2 20

0
SAND2011-6003C



1 I Pure
30.8
"0 0 Material 1
[
Q@ o4
| ﬁf *
Material 2
0 0 0.05 0.1 0.15 0.2
IT Pure
0.8
>
'-% 0.6
[
QJ 0.4
| /\/v—
0.2
0
0 0.05 0.15 0.2
. III Pure
0.8 \/
>
-5 0.6
c
CD 0.4
D /\k

0 005 01 015 02
SAND2011-6003C

Modified Sod Density History

I AP

1
0.8
0.6

0.4

T

0.2

0

0 0.05 0.1 0.15 0.2
IT LRP
0.8
0.6
0.4
0.2 /\'
0
0 0.05 0.1 0.15 0.2
KS

0.8

0.6

0.4

T

0.2

o

0.05 0.1 0.15 0.2

0.8

0.6

I Av

0
0

0.05

0.1

0.15

0.2

" The “pure”
methods come
closest to the
correct values at
the final time.

= All mixed cell methods
undershoot the final values.

" Which method looks heuristically

the “best’?

IIT KSR
0.2 /\

0.2

1 Tipton
05
05
04
m/\\—*
00 0.05 0.1 0.15 0.2 21



Modified Sod Specific Internal Energy History

I Pure I AP I Av ® For material 1,
all methods

4 . Material 2 j i perform about
» > ; : © equally well,
-\ _Material 1 j f and get the
00 0.05 0.1 0.15 0.2 0O 0.05 0.1 0.15 0.2 00 0.05 0.1 0.15 0.2 CorreCt reSUIt.
;1L Pure - W LRP = For material 2, both linearized
j j Riemann problem methods
ne : overshoot significantly.
o) s 3 . .
C : = Tipton overshoots a little, too.
Z, ; = KS heuristically the “best”?
~ III Pure . KS ~ III KSR ., Tipton
LLJ 4 4 4 4
(D 3 i 3C 3 3

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
SAND2011-6003C
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Test Problem #2: the Water-Air Shock Tube

= \Water-air shock tube* initial conditions:
(1.e+3,1.6+9,0.0,4.4,6.e+8), 0=x<0.7, Material 1 | p = (y=1)pe-ypy,
(0, P;1Y, Poc) = (5.e+1,1.e+6,0.0,1.4,0.0), 0.7<x<1.0, Material 2 | ¢,  =2.2e-4

" Final-time snapshots show the stronger shock-tube evolution.

" = |n the following slides, we
present time-histories in the

single mixed cell.

B = Results for all of the methods
mentioned are presented.

©
o
[s)
-
o
o
o
Y
o
(<]
o

Pressure
Jongq=

Density
|

f

2 0
O 0 02 04 06 08 1 0
© Position s " Position 00
3’ | O * All methods have been
N 400 ——
. . demonstrated to be about
1 p= m . .
w T B g first-order accurate on this
5x10 7.5%10 g 100 300 prOblem .
‘ 0 L 400
0 -1.5x10° -100 -500
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Position Position * R. Saurel & R. Abgrall, “A Multiphase Godunov Method for
o ., B Compressible Multifluid and Multiphase Flows,” J. Comput. Phys.
Closed-form” — Computed = Error 1999; 150:425—467.
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1x10°

x10°

Pressure

-5x10°

1x10°%

x 108

Pressure

-5x10%

1x10°

e

Ss10°

Pressu

-5x10°

I Pure

H,0

Air
- Negative
pressure

0 5x10° 1x10™ 1.5x10* 2x10™* 2.5x10™

IT Pure

0  5x10° 1x10™ 1.5x10™ 2x10™* 2.5x10°

IIT Pure

T Negative
pressure

0 5x10° 1x10™ 1.5x107 2x10™ 2.5x10™

SAND2011-6003C

Water-Air Pressure History

I AP

1x10°

Material 1

5x108

() Material 2.

Positive
pressure

-5x10°

0 5x10° 1x10™ 1.5x10™* 2x10™* 2.5x10™

IT LRP

1x10°

5x10°

@«

Positive
pressure

-5x10%

0 5x10° 1x10™ 1.5x10* 2x10™ 2.5x10™

KS

1x10°

5x10°

Positive
pressure

-5x10°

0 5x10° 1x10™ 1.5x10™ 2x10™ 2.5x10™

I Av = All methods:

* Equilibrate

* Obtain the
correct final
pressure

1x10°

5x10°

T )
P Negative
pressure

-5x10®
0 5x10° 1x10™ 1.5x10"* 2x10™ 2.5x10™

= Some pure and mixed cell
methods have negative pressure.
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Summary of these results

Pure Material:
* Basic algorithm with no mixed cell; straightforward for ideal problems.

@ No mixed cell assumptions. @ No mixed cell assumptions.

Equal AP:
* Acoustic approximation, assumed to be equal for all materials.

@ Closed-form expressions, 2-D. @ Sometimes oscillatory, less accurate SIE.

= Equal Av:
* Single velocity — equal velocity increments is a plausible assumption.
@ Closed-form expressions, 2-D. @ Sometimes oscillatory, negative pressure.

= Linearized Riemann Problem (LRP):
* Linearized Riemann problem in mixed cell is used as conservative closure.
@ “Physics-based”, 2-D. @ Questionable SIE, volume fractions.
= Kamm & Shashkov (KS):
* Full Riemann problem in mixed cell — “optimal” pressure of each material.
@ Physics-based. @ Complicated. 2-D? Strength?
= Kamm, Shashkov & Rider (KSR):
* Linearized Riemann problem in mixed cell is used as conservative closure.
@ “Physics-based”, 2-D. @ Questionable SIE, volume fractions.
Tipton:
* Relaxation term — equal pressures: solve exactly for this term.
@ Robust, fast, 2-D & strength. @ Rough & ready assumptions, good results.
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Conclusions

= Multi-material Lagrangian cells remain an important issue.
* The 1-D case allows rigorous testing of closure models.

= Several different closure models were described.

* Some are simple & fast (e.g., equal compressibility), while
others are complex & slow (e.g., using the full Riemann problem).

* Unfortunately, these methods were not all tested with exactly
the same underlying hydro integration scheme.

" There is no clear “winner” among the methods

° In some aspects, simple methods look good (e.g., AP)

* In other aspects, Riemann-based methods do not (e.g., SIE)

* Other problems? Strong expansions, stronger shocks, near-void.
= Many of these approaches can be extended:

e 2 2 materials, with some assumptions about material ordering.
e 2-D and 3-D: VNIIEF methods (Yanilkin et al.) and KSR (Harrison et al.).
4g) = Open issues: (1) 2-D comparisons? (2) Entropy...
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